Damage mechanics modeling of concurrent thermal and vibration loading on electronics packaging
نویسندگان
چکیده
The problem of concurrent thermal and vibration loading has not been thoroughly studied even though it is common in electronic packaging applications. Here we attempt to address such a problem using a damage mechanics based constitutive model. Damage mechanics constitutive model for eutectic Pb/Sn solder alloys is used to simulate the damage effects of concurrent cyclic thermal loads and vibrations on Ball Grid Array (BGA) packages. The model is implemented into the commercial finite element code ABAQUS through its user defined material subroutine capability. For the integration algorithm we have used a return mapping scheme, which dramatically improves the convergency rate as compared to previous implementations of the same model. Results are examined in terms of accumulation of plastic strain within the solder connections. It is shown that the simplistic Miner’s rule can not accurately account for the combined effect of both loadings acting concurrently.
منابع مشابه
Thermal Vibration of Composites and Sandwich Laminates Using Refined Higher Order Zigzag Theory
Vibration of laminated composite and sandwich plate under thermal loading is studied in this paper. A refined higher order theory has been used for the purpose. In order to avoid stress oscillations observed in the implementation of a displacement based finite element, the stress field derived from temperature (initial strains) have been made consistent with total strain field. So far no study ...
متن کاملProgressive Damage Analysis of Laminated Composites using Continuum Damage Mechanics
In this paper, progressive damage and global failure of composite laminates under quasi-static, monotonic loading are investigated using 3D continuum damage mechanics. For this purpose, a finite element program has been developed using an eight-node 2D layered element including layer-wise plate theory. Damage analysis of a single orthotropic layer under various uniform in-plane and transverse l...
متن کاملInfluence of Temperature Change on Modal Analysis of Rotary Functionally Graded Nano-beam in Thermal Environment
The free vibration analysis of rotating functionally graded (FG) nano-beams under an in-plane thermal loading is provided for the first time in this paper. The formulation used is based on Euler-Bernoulli beam theory through Hamilton’s principle and the small scale effect has been formulated using the Eringen elasticity theory. Then, they are solved by a generalized differential quadrature meth...
متن کاملThermomechanical behavior of micron scale solder joints under dynamic loads
Recent trends in reliability and fatigue life analysis of electronic devices have involved developing structural integrity models for predicting the operating lifetime under vibratory and thermal environmental exposure. Solder joint reliability is the most critical issue for the structural integrity of surface mounted electronics. Extensive research has been done on thermal behavior of solder j...
متن کاملThe Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal Shock and Mild Heat Field
In this article, the vibration and dynamic response of an orthotropic composite cylindrical shell under thermal shock loading and thermal field have been investigated. The problem is that the shell is initially located at a first temperature, and some tension caused by a mild heat field is created, then the surface temperature of the cylinder suddenly increases. The partial derivative equations...
متن کامل